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1 Introduction

Accurate simulation of transitional and turbulent flows is of critical importance to many applications in
science and engineering. The onset of turbulence is considered undesirable in many situations such as
those in turbo-machinery, atmospheric re-entry vehicles, commercial aircraft, efc. due to consequences
such as increased losses, aerodynamic heating, and decreased fuel efficiency. In contrast, turbulence plays
a beneficial role in settings such as mixing and combustion of reacting gases. Despite the tremendous
growth in computational resources over the past decade, modeling and simulation of many practical/realistic
turbulent flows — to the desired level of accuracy — has remained challenging, and in some cases, even
inaccessible. Though Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) have offered
tremendous insight and predictive capabilities in many flows, these techniques continue to be infeasible for
high Reynolds number wall-bounded flows. This situation is unlikely to change within the next few decades
unless significant advances are made in hybrid techniques that employ a near-wall model in conjunction
with an outer-layer LES. Thus, near-wall models in both an LES and in a Reynolds-averaged Navier—Stokes
(RANS) context will be the pacing item in applied computational fluid dynamics (CFD). This assertion is
also supported by the findings of a recent NASA study[28].

Popular turbulence (and transition) models are all drastic simplifications to the rich dynamics of turbu-
lence. Turbulence closure equations usually introduce between one and seven additional transport variables
and many adjustable constants selected by the engineering judgment of the modeler. These constants are
calibrated by a small number of simple test cases such as homogeneous turbulence and thin-shear flows,
and given this development process, it is unsurprising that accuracy diminishes as the model is applied to
problems which deviate from the calibrated cases. Typical examples in which RANS models are deficient
involve adverse pressure gradients, inhomogeneous flow directions, secondary effects and flow separation.
Practical turbulence models have been simple out of expediency. However, in attempts to increase accuracy,
some work has shifted toward greater complication in turbulence models. As an example, Refs. 1, 2 intro-
duce additional tensorial bases to account for inhomogeneity, wall echo, and anisotropies in second moment
closures. While these efforts are encouraging, the potential benefits are obscured by the need to determine a
number of free parameters from a small set of often idealized test cases. New strategies are required to move
beyond these limitations and we believe that data-driven approaches are capable of providing solutions.

Data science is on the rise in many disciplines due to improvements in computational power and the
increased availability of large data sets. This has been accompanied by significant improvements in data an-
alytics and machine learning (ML) techniques, both in effectiveness and scalability. Various ML techniques
are widely used today in financial and commercial applications such as stock trading, fraud detection, pref-
erence choices, etc. and scientific applications such as genomics, astrophysics, fluid mechanics, and natural
language processing. Depending on the application, the objectives of the tasks can be a combination of auto-
mated clustering and classification, feature extraction, predictive modeling and improved decision making.
Specifically in the area of turbulent flows, previous efforts have used neural networks for near-wall model-
ing through reconstruction of structures in a fully-developed turbulent channel flow[3], real-time extraction
of coherent spatio-temporal structures[4], and optimization of closure coefficients of the two-equation k-¢
turbulence model [5], efc. Other attempts (Refs. 30,31) have approached the problem from the viewpoint of
structural uncertainty quantification or Bayesian model averaging[32, 33].

Very recently, data-driven statistical inference to correct for model error (Edeling et al. [6]) has been
proposed to address some of the deficiencies of a priori processing. This, and other approaches have fo-
cused on estimating the parameters of the standard models to calibrate a set of pre-specified building-block
functions. The uniqueness of our approach stems from the focus on inferring and reconstructing deficiencies
in the functional form of known turbulence models, rather than on the model parameters. Further, in con-
trast to data-driven descriptive modeling approaches, data-driven predictive modeling involves additional
challenges. The enabling tools in our approach are inverse modeling and machine learning.



In Phase I of this LEARN project, we develop the formalism and tools to infuse closure models of tran-
sition, turbulence and other fields of mechanics with data-driven aspects. First, a proof-of-concept study is
performed in which a known turbulence model is assumed to for the surrogate truth and a Machine Learning
technique is assessed in its ability to replace key terms in the turbulence model. Following this exercise, the
key steps of inversion, learning and injection are exercised in turbulence and transition problems.

2 Machine Learning: Proof-of-concept

In this section, a proof-of-concept of the data-driven approach of turbulence model development is pre-
sented. Specifically, we investigate the feasibility of this approach by attempting to reproduce, through a
machine learning methodology, the results obtained with the well-established Spalart-Allmaras model. In
other words, the key question that we seek to answer is the following: Given a number of observations of
CFD solutions using the Spalart-Allmaras model (our #ruth model), can we reproduce those solutions using
machine-learning techniques without knowledge of the structure, functional form, and coefficients of the
actual model?

2.1 Machine Learning

Feed-forward neural networks[40] are a balance between parametric and non-parametric learning algo-
rithms. A feed-forward neural network is a directed acyclic graph consisting of an input layer, some number
of hidden layers, and an output layer. The net begins with an input feature vector (x;) which is used as the
input to the first hidden layer. The outputs from each layer in turn are “fed forward” as inputs to the next
layer, finishing with the final layer whose output is taken as the prediction for the quantities of interest. Each
hidden layer and the output layer are comprised of a set of neurons. A neuron is a simple computational unit
that takes a weighted sum of its inputs (which are the inputs to the layer), sends that weighted sum through
an activation function, and outputs the final result.

More specifically, assume the neural network has L layers, i.e. L — 1 hidden layers and one output
layer. Let K, be the number of neurons in layer L, and let Z; ;, be the output of the k™ neuron in layer
l. The inputs to all of the neurons in layer [ are the ouputs from layer [ — 1. Each neuron in layer [ has
K;_1 + 1 weights, wy 10, Wi k.1, ---» Wi k,K,_,» With one weight per input to the neuron and one additional
weight acting as a bias term. The output of each neuron is computed by taking a weighted sum of the inputs
and then computing the neuron’s activation function, g; 1, of that weighted sum as follows:

K
Zik = gk (wo + Z wl,k,ile,i> . (1)

i=1
The initial set of outputs, Zy ;, are simply the inputs to the neural network. The number of hidden layers and
the number of neurons per layer are free parameters chosen by the user of the neural network. Activation
functions for the neurons in the hidden layers are almost always selected to be monotonic, non-linear, and to
have finite asymptotic values, and typically only one type of activation function is used. The activation func-
tions for the neurons in the output layer are usually chosen as the identity function in regression problems,

ie., g(x) =z

The weight variables w; ; ;. are free parameters of the neural net. Typically, the user chooses a “loss
function”, which is a function of the predicted value and the true value at an input. The weights of the neural
net are set using some form of numerical optimization in order to minimize the loss function (in our case

the gradient-based algorithms mentioned briefly earlier):

minimize,, ,, Y 1 <p(xi; w; k), txi> )
7

where p(x;; w; j ) is the value at data point x; predicted by the neural net for the given choice of weights,
t, is the true value at z; in the data set, and [(.) is the loss function.

4



Strictly, a neural network is a parametric fit to the data. The functional form is the non-linear compo-
sition of activator functions described above, and the parameters are the weights of the neurons. However,
this composition makes neural networks particularly flexible in the range of functions they can accurately
represent, and the number of free parameters is easily increased. In fact, it can be shown [41] that a suf-
ficiently large two-layer neural network can approximate any function to high accuracy. As a result, the
number of hidden layers is typically kept small < 4, while the number of neurons per layer is scaled as
accuracy demands.

Neural networks seem particularly attractive for turbulence modeling. They are flexible in the range of
functions they can fit, but once the training is complete the functional form is a compact set of equations
represented by a small number of parameters. The neural network prediction is continuous and smooth
(assuming the activator functions are chosen as such), and the computation time for a datapoint is cheap.
For a fixed network size, the neural network prediction time is unrelated to the size of the training data
allowing the use of very large datasets, and gradients of the prediction error with respect to the neuron
weights can be efficiently computed allowing the use of gradient-based optimization to find the optimal set
of weights.

2.2 Problem Setup

The Spalart-Allmaras turbulence model is a one-equation closure to the RANS equations that models the
transport of turbulent kinematic viscosity, 7. The model constructs the Reynolds-stress tensor, 7; ;, by use
of the Boussinesq approximation, and computing the turbulent eddy viscosity, p7, by

3

N X
pr = prfor 5 for G X 3

R

The model assumes © is convected and diffused with the flow, and defines the production and destruction
of ¥ using the wall distance and local flow quantities. The full model is given as:

o o . Ch1 N\ 1( 0 N ov O
E"‘U]a?j—cbl(l—ftz) v— <Cw1fw_l‘€2ft2> <d> +U<3:L“j<(y+y)8xj> +Cb2axi8xi> .4

The convective and diffusive terms have natural definitions, but the correct definition for the source term
is less clear. The above source definition was constructed using the knowledge/experience of the model
authors and simplified flow conditions to tune the values of the unknown constants. While the SA model
gives reasonably-good predictions for many attached flows of interest, it is probable that a better formulation
of the source term could result in better predictions over a wider range of flows. The question is how to
discover such a formulation of the terms that have been explicitly modeled in the S-A equation.

Machine learning provides a novel way to aid in the construction of more accurate turbulence models
by relying on a suite of high-fidelity datasets in order to construct a more accurate closure term formulation,
instead of simply using the modeler’s experience, knowledge, and intuition, and a small set of calibration
flow fields. For example, a well-resolved DNS simulation provides a field of both mean-flow quantities such
as velocity and pressure gradients, and turbulent quantities such as the Reynolds stress tensor at every grid
location. Each grid location in this field contains a piece of information about the evolution of turbulence as
a function of mean quantities and their gradients. A suite of DNS computations, augmented with data from
LES and experimental data, can therefore provide a large corpus of data of the relationship between mean-
flow and turbulent quantities. It follows that a turbulence modeler can use machine learning to pre-process
this large quantity of data, for example to enhance the source term of the SA model. A modeler would
project the DNS Reynolds stress tensor into a turbulent eddy viscosity [42] pointwise, giving a field of 7.



The source could then be computed from the difference of the convection and diffusion. A modeler then
chooses a set of input features (vorticity, viscosity ratio, etc.), and trains a machine learning algorithm to
find the source of © as a function of the chosen inputs. This new “equation” for the source term (the input-
output relationship learned from by the machine learning algorithm) can be used inside the CFD solver
instead of the original equation. Note that no assumptions have been made about the functional form of the
relationship; an entirely new functional mapping is created instead of merely enhancing an existing model.

Given a good choice of input features, a varied set of training cases, and a correct training of the machine-
learning algorithm, this new source term should, in theory, perform better than the original. Of course, this is
easier said than done, and while the idea is very promising, there are many basic questions to be answered.
Can machine learning be successful on CFD data? Will such an algorithm provide similar stability to a
hand-crafted model? Will the learned model successfully predict the result on unseen flows? How much
data is sufficient? Is more data always better? Must we pre-process / pre-select the data prior to providing it
to the machine learning algorithm?

It is difficult to answer these questions by beginning with DNS data to inform the closure terms of
existing RANS models. With DNS data, a complete and compact set of input features is unknown, and even
the best mapping of features is likely to contain significant amounts of noise. In such an environment, it is
hard to distinguish fundamentals flaws in the learning process from the difficulties in dealing with real data.
Instead, it is instructive to begin in a controlled environment in which properties of the learning process can
be explored in isolation.

2.2.1 Model problems

We will take case of the Spalart-Allmaras turbulence modeal as a model problem, and use machine-learning
to attemps to reproduce its behavior. The SA source term is a known, analytic function and thus the cor-
rect inputs and the outputs are avaiable. For exploratory purposes, we can assume that Spalart-Allmaras
represents the true behavior of turbulence, and see if a machine-learned model of SA correctly reproduces
its results. In this sandbox, the correct answer is known, and any differences between the ML and SA flow
solutions can be attributed to difficulties with the learning process (as opposed to noisy data, incorrect input
choices, etc.). Additionally, such a study firmly establishes a methodology for future ML experiments using
DNS (or LES) simulation results.

There are many ways to “learn” the SA source term. The full source term, s, could be replaced, or it
could broken into several parts: the production

sp = cn (1 — fi2) S0, ©)
destruction N2
Sq = (cwlfw — ngw) (;) , (6)
and/or cross production 9% 95
Sep = %a; a; ' @

The production could be further simplified to studying only the multiplier of So, my = ¢p1(1— fr2), and the
destruction term could be simplified to only consider the multiplier to (7/d)?, mg = cw1fuw — (cp1/K?) fi2-
The learned model could be used in certain regions of the flow, for example exclusively within the boundary
layer, or applied in the entire flow domain.

For any of these choices, the basic procedure we follow is the same:

1. Collect a portfolio of flow solutions of interest by running the true S-A model in a suitable CFD
solver.



2. From each grid location in each flow solution, extract and/or compute an input feature vector and an
output feature vector.

3. Construct the training set by concatenating the feature vectors from step 2.
4. Choose an appropriate machine learning algorithm and loss function.

5. Train the ML algorithm on the training set from 3. This creates a functional mapping between the
chosen inputs and outputs (i.e. constructs a model of the source term).

6. Integrate this learned model into the CFD solver, and run a representative set of validation cases to
test the behavior of the machine-learned source term.

We discuss in greater detail the choices for the input feature vector and loss functions below.

2.2.2 Local Non-dimensionalization

The source term is known to be a function of five local flow quantities, v, ¥, €}, d, and N = 889[2 gz_ .
These quantities, however, are not an appropriate choice for the input feature vector to the machine learning
algorithm. They are dimensional quantities which may have different numeric values even when two flows
are dynamically similar. While an ML algorithm could be trained on these dimensional quantities, there is
nothing to gain by doing so; transforming the inputs such that all flows have the same scale makes the data
more compact, loses no generality, and helps prevent overfitting by the ML algorithm. We rescale the inputs
using v = v* and L = L* (where L is the Reynolds length scale). The flow quantities used in the ML
process then become

vt =0/v" (®)
&= d/L ©)
*2
o=""qg, (10)
14
L*Q
N*==.N, (11)
14
L*Q
14

This “global” non-dimensionalization ensures that the SA source term is similar between similar flows, and,
additionally, it simplifies the problem as the source is now a function of four quantities, o*, 0*, N*, s;*,
rather than five since v = v*.

It is possible to further non-dimensionalize the features by relevant local quantities that are representa-
tive of the state of turbulence. From the Buckingham-Pi theorem we know that there must be a function that
relates a locally non-dimensional source term to local non-dimensional quantities. We define local scales,



v + v and d, and introduce

Q, 13)

N=—SN, (14)

_ 1
— e (1 — fio) (Xfﬁl) (Q + szfﬁlf@ : (15)
2
= <X> Cwtfo (16)

=2y (17)

as locally non-dimensional transformations of the dimensional quantities. This local non-dimensionalization
has both benefits and drawbacks. On the one hand, this has further simplified the problem as s is a function of
three variables rather than four, €, X, and N, and data points are consistent across a single dataset. However,
this non-dimensionalization comes with a cost. The non-dimensionalizers, d /(v +7)? and d/(v + ©)? have
poor numerical properties. As d gets large, for example on the outer boundaries of an airfoil mesh, so do
), N, and 5. This poor scaling not only makes it difficult for the learning algorithm to find the (relatively)
small window of relevant differences in input values, but it is also easy to have extreme outliers, especially
problematic for evaluating unseen data locations ( this is not a problem for the original SA model because
terms are only divided by d). In order to re-dimensionalize the source term value, it is necessary to multiply
by (v + ©)?/d?, which is poorly behaved near the wall. It is possible that the values for © and d could be
thresholded to avoid such scaling difficulties, but it is difficult to know what that threshold should be.

2.2.3 Loss function

In machine learning, the loss function serves as the objective function for choosing algorithm parameters. It
defines the quality of a specific prediction, as well as the relative quality between two different predictions.
As discussed in Section 2.2.1, the free parameters of the machine learning algorithm are chosen to minimize
the sum of the loss function over all of the training points, and so assuming the training data cannot be fit
perfectly (which is almost always the case), the loss function dictates the proper balance of prediction errors.

For example, a squared loss function,
k

L=t ()

=1

more heavily penalizes predictions that are far away from the truth, whereas a “Manhattan” loss function,

L:Z|(pi_ti)| ; (19)

penalizes outliers relatively less. A machine learning algorithm trained using a squared loss function will
often reduce the error in the most incorrect prediction at the expense of being slightly incorrect at many



other locations, whereas an algorithm trained using a manhattan loss function will be more accurate at many
points at the cost of having some extreme outliers. The choice of loss function is left up to the user, and
should reflect the cost of misprediction inherent in the problem.

When embedded into CFD, the learned algorithm defines a part of the PDEs to be solved. During
training, the cost of misprediction should reflect the deviation from the underlying physics that resulting
from the ML source term. Unfortunately, such a loss function is difficult to use directly. It is numerically
expensive, as it requires all the flows of interest to be recomputed at every iteration of the machine learning
training procedure to measure the error caused. Additionally, early iterations of the training procedure
will be highly unphysical turbulence models, which will likely cause instabilities in the CFD solver. This
would make it impossible to use gradient-based optimizers to find the best set of parameters. It is desirable,
therefore, to have a loss function whose measure of quality requires only the training data and not additional
PDE solutions. When modeling the locally non-dimensionalized source term, the squared loss function does
not appropriately reflect the cost of misprediction. In the PDE solver, fluxes are computed as a function of
dimensional source values, i.e. the output of the ML algorithm multiplied by (v + )2 /d?. If this is large,
then a small error in the prediction of the non-dimensional source will be amplified into a large error in the
dimensional source. One way to fix this discrepancy is to predict the non-dimensional source term, but now
to use a squared loss function on the dimensionalized source term

k d2 2
Ly = Z <<W)P§z - ts,i) . (20)

=1

This loss function penalizes differences in the quantity that is relevant to the PDE solver, and thus may be
a better measure of the effect on the true system. Note that this loss function is not the same as weighting
data points based on the non-dimensional constant, i.e.

k d2 2
Ly=)> ———|psi—tsi| - 21
DS o

In this latter formulation, if d? /9; + v;)? is close to zero, then every very large differences between the true
and predicted values will have a small loss. In the first formulation, the augmented prediction is incentivized
to be close to the true value at all data points.

2.3 Results

We have exercised this methodology to learn and replace the Spalart-Allmaras turbulence model. We ex-
plored the behavior with a variety of in input and output features, loss functions, and training and testing
datasets.

In the results below, we considered at three main sets of training flow solutions. All flows were computed
using the using the Stanford University Unstructured [43] flow solver, a median-dual vertex-based code with
an inflow Mach number of 0.2. The first set is the development of a turbulent boundary layer over a flat plate
with zero pressure gradient, in which the flow was computed at Reynolds numbers of 3, 4, 5, 6 and 7 million.
The second set is the development of turbulence during pressure driven flow through a channel at a Reynolds
number of 5 million where the outlet pressure is taken as poy: = Pin+cp* p*ufn Iz The flow was computed at
¢ ={-0,3,—.1,-0.03,-0.01,0.01,0.03, 0.1, 0.3}. Both the flat plate and channel flows were computed
on a cartesian mesh which has 137 cells in the x-direction and 97 cells in the y-direction. It was run with
a farfield boundary condition on the top surface for the flat plate flows and a symmetry boundary condition
for the channel flows. The third set of cases was the NACA 0012 airfoil at a Reynolds number of 5 million
with an angle of attack sweep between 0 and 12 degrees. These flows were used as three different training
data sets:



1. Flat plate at Re = 3, 5, and 7 million.
2. All of the pressure-driven channel flows.
3. All flat plate, channel, and airfoil flows.

For each learning case, every flow was used for testing. There is one datapoint for each grid location in
the boundary layer of the flow, which is defined as defined as the locations where /U;U; < Uy, s and
Sfwake < 0.5. The definition for fi,qke iS:

oU; an> )

Sij = 0.5<8$j + O

Sm == \/QSijSij (23)
Rs = px Sy xdxd/(0.09u) (24)
fuwake = exp(—1"RyR) . (25)

This term distinguishes the wake of the airfoil from the boundary layer.

In each case, learning was conducted using a feed-forward neural network with two hidden layers each
containing fifty neurons. At the start of the learning procedure, the data points were linearly scaled such
that each input and output has a mean of zero and a variance of one over the whole data set. In all cases, the
parameters of the net were trained using the BFGS gradient-based optimizer which is stopped when either
the average loss function value is below 10~ or 10,000 function evaluations have occurred. Once training
was completed, the RANS solver was modified to call the neural network instead of the standard SA model
for the boundary layer points. The flow was then re-run starting from uniform flow with the new turbulence
model.

2.3.1 Loss Function comparison

We explored the differences between the squared-distance loss function and dimensionalized loss function
discussed previously. The same experimental set-up was used as above, in which training data was taken
from the flat plate solutions at 3, 5, and 7 million Reynolds number, and was additionally tested on 4 and 6
million. We tested the two different loss functions for learning the non-dimensional source term s. Figures
1, 2, and 3 show the results from the squared-distance loss function. Figures 4and 5 show the results from
the dimensionalized loss function. It is clear that the dimensionalized loss function greatly outperforms the
standard loss function in this case. The squared-distance loss function only penalizes differences in s, and
Fig. 2 shows that the neural net is predicting 5 quite well. However, as seen in Fig. 3, these differences are
magnified when they are redimensionalized, creating large differences in the actual value of the source term.
In contrast, when the neural net is penalized for dimensional differences, the source term is well-replicated
as is the mean flow.

2.3.2 Extended exploration

We examined replacing a number of different parts of the boundary layer:

1. 5= f(9,x)
2. fuw=f(Qx)
3. ma = f(Q,x)
4. my = f(Q,x)
5. 8 = f(Qx)

10
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For the non-dimensional quantities, f.,, mgq, and m,, a squared-difference loss function was used, and for
the dimensional quantities, 54, 5,, and 5, the dimensionalized loss function (as discussed in 2.2.2.2.3) was
used.

The results can be seen in tables 1, 2, and 3. A bold table entry denotes that the solution was part of the
training data. All non-bold table entries are evaluations of the machine-learned turbulence model on unseen
data. The table compares the resulting cy after the flow recomputation with the original ¢y from the flow.
A perfect machine learned model would reproduce the behavior of SA and would show no differences with
the original model. The three categories are:

1. P =Poor, signifying large-scale difference (Fig. 6 , Fig, 7).
2. F = Fair, signifying a significant difference in a small portion of the domain (Fig. 8 , Fig, 9).
3. G = Good, signifying an identical or nearly identical flow solution (Fig. 10, Fig, 11).

In general, we see excellent agreement for a wide variety of training data sets and source term replace-
ments. The majority of the trials yield positive results, and are able to reproduce the correct flow solution
with high accuracy. In particular, Tab. 1 shows the ability of ML to project to new flows. A model trained on
flat plate boundary layer data correctly predicts ¢y for a NACA 0012 airfoil. Additionally, neural networks
appear to be stable when embedded within a PDE solver, as the solver did not diverge in any of the condi-
tions, even those with a poorly-predicting model. These cases were run without tweaks to the configuration
of the flow solver to improve convergence (CFL number, multi-grid settings, etc.). In general, these results
highlight the ability of ML to be used to augment a turbulence model.

These results also highlight some of the difficulties with the ML process. ML can perform poorly when
projecting to new data scenarios, as seen by the relatively poor performance on the channel flows when
learning the source from only flat plate solutions (Tab. 1). When a more relevant dataset is used to learn the
source term (Tab. 2 and 3), the solution is correctly reproduced.

It is clear that replacing 1, is less robust than the other terms. The reason for this is due to the numerical
properties of m,, specifically the 7/ d? term in the definition of S. This creates extreme outliers in the ML
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Figure 7: Example of a comparison
marked as Poor. This is replacing m,, in the
boundary layer of the NACA 0012 airfoil
at 2 °using training data from the pressure
driven channels.
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Figure 9: Example of a comparison
marked as Fair. This is replacing s in the
boundary layer of the NACA 0012 airfoil
at 5 °using training data from the pressure
driven channels.



Mul. | Mul.

Dest. Dest. | Prod. | Prod. | Source

Flatplate 3e6
Flatplate 4e6
Flatplate Se6
Flatplate 6e6
Flatplate 7e6
Channel C), = —0.3
Channel C), = —0.1
Channel C), = —0.03
Channel C), = —0.01
Channel C), = 0.01
Channel C), = 0.03
Channel C), = 0.1
Channel C), = 0.3
NACA 0°
NACA 1°
NACA 2°
NACA 3°
NACA 4°
NACA 5°
NACA 6°
NACA 7°
NACA §°
NACA 9°
NACA 10°
NACA 11°
NACA 12°

aEsNsNsRoREsEsNsNsRoRsRAEs Lo s NsRsRo RNl IO NsNaNANS!
QQQOQOQQQQQQQDQQQOQOQQOQQQ?
olsNsNsRoRsNsNsNsRoRsRsEsl IoNsNsNs RN RSN IO NSNS NS NS!
T QOO
oloNasNoRoRoNoNsNaoNoNoRoEalL-EolasNoNoRoRoNal IoNoNaNaNe!
oloNasNoRoRoNoNaNaNaRORON®] ReolieNeslesNesles el IO NoNaNaNo !

Table 1: Results from replacing parts of the SA source term with a neural network using training data from
flat plates at Re = 3,5, 7 million. The flow was re-initialized from uniform flow, and the letters represent
how well the newly converged flow solution matches the original SA flow solution.
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Dest. Dest. | Prod. | Prod. | Source

Flatplate 3e6
Flatplate 4e6
Flatplate 5e6
Flatplate 6e6
Flatplate 7e6
Channel C;, = -0.3
Channel C;, = —0.1
Channel C, = —0.03
Channel C,, = —0.01
Channel C,, = 0.01
Channel C,, = 0.03
Channel C;, = 0.1
Channel C;, = 0.3
NACA 0°
NACA 1°
NACA 2°
NACA 3°
NACA 4°
NACA 5°
NACA 6°
NACA 7°
NACA 8°
NACA 9°
NACA 10°
NACA 11°
NACA 12°

aEsRoNsRalasNsEsNsEsNsRaNslIsRoNsEaNasRsEasNslIoEas N RaNS!
oo EoNoNoNoNaNaNalalsNa sl laNaNalaNsNoRoNollaNalsRoRal e
aNsNoNsRasRNsEasNsNaNsRaNslIsRoNsRaNaRs s lIsEaNoRaNS!
caacoacacacacacaQQuuY QMY YYY T Y YT T T T T
aNsNoNsRasRsEaNsNasNasRoNslIsRoNsRoNaRsNaNslIsNaNaRaNS!
oo Na NN Neslle:Neslle:NeslisHes s RoNa RO Na Mo N Na el Meslles M-

Table 2: Results from replacing parts of the SA source term with a neural network using training data from
the channel flows. The flow was re-initialized from uniform flow, and the letters represent how well the
newly converged flow solution matches the original SA flow solution.
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Dest. | F,, | Dest. | Prod. | Prod. | Source
Flatplate 3e6 G G G P G G
Flatplate 4e6 G G G P G G
Flatplate Se6 G G G P G G
Flatplate 6e6 G G G P G G
Flatplate 7e6 G G G P G G
Channel C;, = -0.3 G G G F G G
Channel C;, = —0.1 G G G F G G
Channel C, = -0.03 | G G G F G G
Channel C, = -0.01 | G G G F G G
Channel C,, = 0.01 G G G F G G
Channel C,, = 0.03 G G G F G G
Channel C, = 0.1 G G G F F G
Channel C;, = 0.3 G G G F F G
NACA 0° G G G F G G
NACA 1° G G G F G G
NACA 2° G G G F G G
NACA 3° G G G F G G
NACA 4° G G G F G G
NACA 5° G G G F G G
NACA 6° G G G F G G
NACA 7° G G G F G G
NACA §° G G G G G G
NACA 9° G G G G G G
NACA 10° G G G G G G
NACA 11° G G G G G G
NACA 12° G G G G G G

Table 3: Results from replacing parts of the SA source term with a neural network using training data from
all of the example flows. The flow was re-initialized from uniform flow, and the letters represent how well
the newly converged flow solution matches the original SA flow solution.
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Figure 10: Example of a comparison Figure 11: Example of a comparison
marked as Good. This is replacing s in the marked as Good. This is replacing 5 in the
boundary layer of the ¢, = —0.3 channel boundary layer of the NACA 0012 airfoil
using training data from all of the flow so- at 8°using training data from the three flat
lutions. plate solutions.

input data that cause difficulties in the learning procedure. For example, the range of m,, in the flat plate
solutions is between 0.3 and 1.4 with a reasonable density of data points along the entire range. However,
there are a small number of data points in the channel flows where m, < —500, and there are a small
number of locations in the NACA 0012 solutions with a value of m,, < —10000. In contrast, f, has limiters
built-in to the model, and has no values less than O or greater than 2 in any of the flows. We see that the
learning of f,, is notably more robust, and performs well across all datasets as a result. This is in spite of the
fact that f,, is a more complicated function to reproduce. This highlights the importance of data treatment;
it is important to choose input and output features that avoid extreme outliers.

An additional important finding is that the accuracy of the ML algorithm at the converged flow state is
not necessarily indicative of success when used to converge the flow solution starting from uniform flow.
As an example, Fig. 12 shows the ML prediction for SA source at the converged flow state for the channel
flow with ¢, = —0.3. The agreement looks very good, and yet the eventual flow solution showed significant
deviation. Similarly, Fig. 13 shows the prediction of m,, at the converged NACA 0012 flow state at 3 “angle
of attack. While the prediction looks quite poor, the eventual flow state shows good agreement. In general,
poor ML performance does in fact lead to poor flow solutions. The prediction of m,, is special because at
many data points {2 is small, so even large discrepancies in m, have a negligible impact on the final flow
solution (as in Fig. 13). We find that good ML performance is, in general, a necessary, but not sufficient,
condition for good online performance. There are many opportunities to deviate from the correct solution,
especially in a non-linear system like the RANS equations. The ML algorithm is trained on only converged
flow solutions, and flow states at non-converged conditions, such as will occur during the flow solution, can
look quite different from the final state. Furthermore, minor errors in the prediction can lead the solution
further astray as the solver feeds those errors back upon themselves in the iterative process of convergence.

3 Inverse Modeling

The previous section provided the proof-of-concept that machine learning techniques can replace key terms
in a turbulence model, which was assumed to be the surrogate truth. If we are to make advances in turbulence
modeling, however, the key step of inference has to be applied to convert data into information that the model
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Figure 13: Predicted source value vs. true

Figure 12: Predicted source value vs. true source value for the NACA 0012 airfoil at
source value for the channel flow at a ¢, of 3 °angle of attack. The predictions are on
-0.3. The predictions are on the boundary the boundary layer points at the converged
layer points at the converged SA flow state. SA flow state.

is consistent with. For this case, we use inverse modeling. The focus of Phase I is to introduce the general
ideas and evaluate the promise of our approach, and hence the demonstrations will be restricted to simple
eddy-viscosity-based closures for transition and turbulence.

3.1 Application to a turbulence modeling problem

The closure model that will be considered for the study is the Spalart-Allmaras turbulence model [8]. In this
model, a transport equation for a surrogate variable © of the turbulent eddy viscosity v; is employed. The
eddy-viscosity surrogate v is transported according to

br_ P(0)— D)+ T (), (26)
Dt

where the production P, the destruction D and the diffusion 7" terms are non-linear terms that are modeled
empirically. The above equation is used with a non-linear functional relationship to derive v; from 7, which
is then used in a Boussinesq formulation to compute the Reynolds stresses. Extracting o, say from DNS
or LES data is of little use without knowing how it will be used in a model. Further, since these equations
contain no explicit physical or data parameters, not much benefit can be derived from parameter estimation.
The issue at hand, rather, is that the functional forms of the terms in Eq. 26 are themselves inaccurate,
and in some cases, substantially so.

The chosen application involves the modeling of a non-equilibrium turbulent boundary layer. Specifi-
cally, the evolution of a boundary layer over a convex wall is studied, with the computational domain shown
in Fig. 14. The geometry corresponds to that used in the experimental measurements of Webster, Degraaf
and Eaton[10]. In this problem, the top and bottom boundaries are treated as viscous walls. The left bound-
ary is an equilibrium turbulent boundary layer at a momentum thickness Reynolds number Rey = 12170,
while the right boundary is a subsonic characteristic outflow. We compare the outputs of our model to the
wall-modeled LES (WMLES) computed by Radhakrishnan and Piomelli[11].

As a demonstrative example of the proposed approach, a spatio-temporal function «/(x, t) is introduced
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Figure 14: Computational Domain.

into Eq. 26 in the following form:

Di
FZ = P(#) — a(x,t)D(®) + T(¥). @7)
In this paper, we will work with statistically steady problems, so a will be assumed to just have spatial
dependence. Assuming we have data G4, which is a scalar or a vector, a Bayesian! (or Least-squares-
based frequentist) inverse problem can be constructed to infer «|G4. In this specific example, a classical
deterministic optimization with no regularization, i.e.

a|Gyg =arg minJ = argmin||Gy — Gull2 (28)
(0% (0%

s used. Since skin friction data is available from LES, the following objective function was used:

J = / [Tg“m(s) _ T{yodel(s)rds, (29)

where the subscript w denotes the lower wall of the computational domain.

The resulting values of a(x) are analogous to the maximum a posteriori (MAP) estimate in a Bayesian
inversion with an iteratively updated prior. It may be argued that functional error also exists in the Boussi-
nesq approximation and it could overwhelm the error arising from deficiencies in the transport equations for
turbulent scalars. While this assertion may be true in situations such as those with strong secondary flows,
an appropriate eddy viscosity (inferred via inverse problems or using a least-squares extraction from high
fidelity solutions) was verified to result in a high degree of predictive accuracy of the mean flow quantities
in a number of two-dimensional and mildly three dimensional problems that we have investigated. Thus,
before questioning the imperfectness of the Boussinesq approximation, it is important to properly assess the
effect of deficiencies within eddy-viscosity models.

In the above approach, « is thus sought at every discrete location in the computational domain, and
used in Eq. 27, conjoined with the conservation equations for the ensemble-averaged mass, momentum and
energy. The resulting inverse problem is extremely high-dimensional and thus an efficient adjoint-based
optimization framework is employed. Details are provided later in this section. This problem is statistically
time-independent, and involved inferring o at 14000 spatial locations. Figure 15 compares the baseline
solution i.e., with «(x) = 1 V x and the solution inferred from the data. Figure 16 shows the distribution
of the inferred function « over part of the computational domain. This exercise helps directly quantify
modeling inadequacies — information that is already extremely valuable to the modeler. Typical practice
is to modify one of the above terms using physics-based arguments (for instance, Ref. 9). The inverse
modeling procedure gives a quantitative target for functional modification. Alternately, machine learning

'Tt is understood that the use of a Bayesian framework allows for a more rigorous specification of prior information about the
model.
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Figure 15: Skin-friction distribution on the lower surface of the computational domain in Figure 14.

methods (introduced in the next section) can also be used. Physically, the higher values of « over the surface
of the bump implies a higher rate of destruction of turbulence over the convex surface, which the original
model was lacking. It has to be mentioned that, while the quantitative information on model inadequacy is
useful, physical interpretations are somewhat loose because all other aspects of the model are also imperfect.

Further, The choice of introducing « as a coefficient function of the destruction term of turbulence
model, while being a good physical option, is not necessarily restrictive of the model. Equivalently, a more
general function 4 could have been introduced as a model discrepancy in the following form

Dv - - -

— =P(0)—-DW)+T(v)+4. (30)
Dt

However, both Eq. 27 and 30 are equivalent in that introducing « or § has fundamentally changed the model,

and in fact, if D # 0, 6 = (1 — «)D. The advantage of Eq. 27 is that the resulting optimization problem is

well-conditioned?.

3.2 Application to a transition modeling problem

When free-stream turbulence levels are about 1% or more, boundary layers typically proceed from laminar
to fully turbulent states without the occurrence of linear instability of the base state: this mode of transition
is referred to as bypass transition. Models of bypass transition for general CFD codes are a relatively recent
development (Ref. 12) compared to natural transition. At a fundamental level, the bypass process occurs as
turbulence diffuses into the laminar boundary layer and generates disturbances known as Klebanoff modes.
These grow in amplitude, and transition to turbulence occurs [13]. Closure models, at RANS level, are very
loosely based on this mechanism. One method is to use the concept of intermittency  to blend the flow
from the laminar to the turbulent regions. Intermittency is associated with the spottiness of turbulence and
manifests itself as a non-Gaussian behavior in turbulent flows. An “intermittency factor” can be formally
defined as a fraction of the time turbulence is active, and modeling strategies are roughly based on this
definition. The intermittency factor is not a property of the simulation/experimental database, but is rather
a property of the closure model.

2This is because of two reasons: First, c is unit-less and second, the posterior value of « can be expected to be of the same order
as its prior value of 1, whereas ¢ will have to be initiated at 0.
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Consider the k—w closure (with values of the constants given by Wilcox[17]) and the Reynolds-averaged
Navier-Stokes equations. Transition can be introduced by multiplying the production term of the k equation
by a function ~y(x). -~y is zero in laminar flow, and ramps up to unity in fully turbulent flow. ~ appears
within the turbulence model only as a factor in the production term of the turbulent kinetic energy transport
equation:

% = 21/T]S|2’y—CMkw+8j[<l/+ Z—Z)ajk} (3D
% = 20 lS? - Cuses® + 05| (v + Z—T)ajw} (32)

The eddy viscosity vr is k/w.

The model developed by Ge et al.[18] is based on the idea that, in bypass transition under free-stream
turbulence, non-zero ~y diffuses into the boundary layer, allowing & to be produced, thereby creating eddy
viscosity and further enhancing the diffusion of ~. In this way, transition occurs by penetration of free-
stream turbulence into the boundary layer via molecular and turbulent diffusion. An intermittency transport
equation is defined with a source term, P, that contributes to producing intermittency inside the boundary
layers. A sink term, £, ensures that the boundary layer initially is laminar. The form of the model is

D v ov
=l o+
A detailed description of the model can be found in Ref. 18.

We begin with the question of determining the intermittency field that will be required within the context
of Eq. 32 to match given data on transitional flows. In this problem, the objective function in Eq. 29 is again
employed. We will start with a fully turbulent assumption (i.e., y(x) = 1) and attempt to minimize J by
considering every grid point value of + as parameters in an optimization problem. A sample result of this
inverse problem is shown in Figure 17. The output of the problem min, 7 is thus a data field (x) that is
suited to the £k — w model. Note that intermittency is defined operationally, in terms of the model and the
mechanism of ramping up the production term. It is not a physical variable that can be obtained from data,
independently of its use.

Figure 18 shows the result of the inverse solution on the T3-series of test cases[19], which correspond
to bypass transition to turbulence over a flat plate with different turbulent intensities and pressure gradients.
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Figure 17: Result of inverse problem to match the experimental skin friction for the T3A test case[19]. The
initial condition assumes fully turbulent flow.
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Figure 18: Result of inverse solution to match skin friction for T3-series of test cases. Symbols: data; lines:
computation.
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The left column in Figure 19 shows the inferred intermittency field. The right column shows the intermit-
tency field obtained using the transition model of Ge et al. [18] with the mean flow imposed from the inferred
solution. The most significant difference in the T3A and T3B cases is that the inferred field extends higher
in the boundary layer near the inlet. This difference explains the the over prediction of C'y near the inlet in
the original Ge et al. [18] model and suggests that the sink term in Eq. 33 needs improvement.

The T3C1 case has a high level of free-stream turbulence and shows a prompt transition. Again the
inferred field shows the low intermittency extending higher in the boundary layer, near the entrance, than the
model. The T3C2 case has a lower free-stream intensity and lower Reynolds number than T3C1 and the Cy
prediction in Ref. 18 is fairly accurate; correspondingly, the inferred and modeled fields were confirmed to
be fairly close. The cases presented here are representative of the other T3 cases: The inferred intermittency
field shows the region of 7 < 1 extending higher into the boundary layer near the inlet and the v = 1 region
is achieved farther inside the downstream boundary layer. The model postulates a sink term that is a function
of Ry = vp/v and R, = d?|2|/2.188v. It is not clear that the discrepancy between the model and inferred
fields can be parametrized by these terms. In the next section, a new parametrization, based on machine
learning is proposed to improve the model.

Note that, unlike the turbulence modeling example in which « was constructed as an unknown functional
correction, the inference of  in the transition modeling example is in a different context.

3.3 Optimization procedure

The optimization problem uses a gradient-based Quasi-Newton method employing the limited memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [16]. Since the optimization problem is extremely
high dimensional (as the number of parameters equals the number of mesh points), an adjoint solver is re-
quired to efficiently compute gradients. Consider the discretized governing equations (including boundary
conditions) Ry (Upg, ) = 0, where Uy represent the conserved variables in the RANS equations along
with the turbulent scalars. For a discrete objective function Jp, the discrete adjoint equation[14] for the
vector of adjoint variables Wy is given by
OoR H T W, — 8j H T

{8UH} = [8UH] '

In this work, the software suite ADOL-C [15] has been used for automatic differentiation of the complete

set of dependencies including the scalar transport variables. Given the adjoint solution, the gradient of the
cost function with respect to the intermittency «; at every mesh point can computed as

dOéi N H 80[1-

(34)

and used in the optimization loop.
4 Machine Learning Results
In the transition modeling problem, we will first write Eq. 33 as
D~y v o vr
7:3.[(7 7)5, ] S . 35
Dt J O’l+07 |t (33)
Since convection and diffusion are fundamental transport properties, the functional form of the source term
S, (i.e. production minus destruction) will be targeted for improvement. To be consistent with predictive
RANS modeling, S, will have to be extracted from the inferred flow-field (rather than the DNS or LES)
which was computed in the previous section. This can be determined by considering Eq. 35 and computing
S, by using the following balance (on the optimal mean and intermittency flow-fields)

S, = % — 0 [(UKZ + Zi)aﬂ] (36)
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Figure 19: Comparison of inferred intermittency field and the model of Ge et al. [18] for selected cases, with
the mean flow imposed from the inferred solution. The line is an iso-contour of 99% of the inlet free-stream
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For the T3-series of test cases, the selected features are

_ ou Ov
q= 7w7%ay7 ay’
where (2 is the vorticity magnitude and d is the distance from the nearest viscous wall. These features were
selected from a set that included the full velocity gradient tensor, the transported scalars k,w, vy, and three
non-dimensional parameters {v; /v; d§)/v; ) /w} that appear in the original Ge et al.[18] model. A standard
hill-climbing[21] algorithm was used to narrow down the feature set. Only points within the boundary layer
were considered for Machine Learning. Outside the boundary layer, the analytical source term from the
baseline model was used. The RANS output was divided into two parts: 80% of the data was used training
and 20% for validation. The validation sets were used to adjust hyper-parameters in both Neural Networks
(NN) and Gaussian Process (GP) models. Figure 20 plots the original versus the predicted values of S,
produced by the optimal NN and GP. The SSE for the GP method was found to be four times smaller than
that of the NN. It has to be mentioned that the GP method is based on an in-house code for regression and
optimization, whereas the NN code uses the FANN][7] library. Though this behavior is representative of the
T3-series, this demonstration is preliminary in nature and conclusions about the merits of each ML method
cannot be drawn based on the limited number of evaluations.

2/v| (37)
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Figure 20: Original versus predicted S, for various ML methods for T3C1 transition case.

5 Data Injection Results

The inversion and machine learning steps should be considered as pre-processing or off-line steps in the pro-
posed framework. During the training stage of the ML model, theoretical knowledge and intuition should
be used to inform the ML step of asymptotic behaviors and in regions of sparsely-populated feature space.
An example in turbulence modeling would be to use rapid distortion theory to supplement the data set in
regions of high deformation rates. During the predictive simulation, (at each time-step or solver iteration),
the solver will pass feature vectors q. to the ML ‘testing’ routine and receive appropriate model correction
quantities o, =~ y.(qs) for injection into the data-driven turbulence model. These quantities are requested
at every spatial grid point in the computational domain. If the GP model is used, the information on the
probabilistic structure of a, can be utilized to generate a number of realizations. The ensemble of simula-
tions can account for the impact of structural uncertainties in the turbulence model. If an ensemble of
simulations are generated, the inevitably large dimension of o, will require efficient reduced-order spatial
and stochastic representations[24, 25] of . to keep the computation tractable.
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(a) Inferred source term (b) Predicted source term

Figure 21: Comparison of inferred source term and neural network prediction for T3C1.

Simulations of bypass transition, in which the inferred and reconstructed quantity is .S, in the transi-
tion model introduced in the previous section is used as a demonstrative example. Figure 21 compares the
predicted source term S, (g) versus the actual source term .S, (x) via the inverse solution for the T3CI tran-
sition case. The close agreement confirms the validity of the new parametrization. The inferred, predicted
and baseline model [18] intermittency profiles for the T3C1 case are shown in Figure 22. For the data in-
jection, initial computations were performed with the baseline model. The machine-learned source term S
was then blended into the solution in the form S, = (1 — 8) [S4],,serine + B [S+] 1/ .- gradually increasing /3
from O to 1. The inadequacy of the baseline model in predicting the high levels of intermittency required in
the context of the k —w closure is again confirmed. Note that, to attain the intensity of turbulence in the fully
developed region, the intermittency variable has to assume a value greater than unity. This is a failure of the
closure model to represent the physics in sufficient detail and thus the role of the intermittency as a model
variable, rather than a physical one is emphasized. Figure 23 shows the ability of the machine learning
method to reproduce the inferred skin friction results. The noisy nature of the prediction is partly a result of
the lack of detail in the data (a total of six T3-series cases were used for the inference). Improvements can
be expected by using a larger set of inverse problems as well as by performing the inference with respect to
a wider set of objective functions.

6 Summary

The traditional approach to closure modeling does not leverage the availability of large amounts of data
from high fidelity simulations and high resolution experiments. The proposed set of approaches highlight
the potential of inverse modeling and machine learning techniques to quantify and account for deficiencies
in turbulence and transition modeling using data from simulations and measurements. The focus on the
functional forms of the closure (rather than on parameters in the model) offers the promise of improved
predictive models under the premise that the data is diverse enough to characterize the physical phenomena
to be modeled. The inverse modeling step, by itself, provides direct information on the model inadequacy
which is of value to the modeler. It has to be mentioned that machine learning should be considered as
just one tool to convert the inferred information into modeling knowledge. The modeler can, in principle,
use information from the inverse problem to make parametric corrections to existing models. The proposed
techniques are general enough to be applied in any physical modeling situation in which appropriate data is
available.

In Phase II, work is aimed at inferring model inadequacies in a wider range of problems to specifically
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Figure 22: Intermittency field at selected streamwise stations for inferred, predicted and model for T3C1.
Locations are x=0.1,0.2,0.4,0.6,1.0,1.5.

Figure 23: Skin friction prediction for T3CI.
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target turbulent flow separation and bypass transition. While Phase I suggests that there is merit in explor-
ing data-driven techniques, several details are being addressed currently. Towards this end, a consistent
Bayesian framework for inversion/machine learning/uncertainty propagation is being built, such that the
targeted model can offer improved predictions as well as confidence intervals on the predicted outputs.
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